TRIALKYLTHIO- AND TRIPHENYLTHIO-CYCLOPROPENYL CATIONS Z. Yoshida, S. Miki and S. Yoneda Department of Synthetic Chemistry, Kyoto University Yoshida, Kyoto, 606, Japan

(Received in Japan 19 September 1973; received in UK for publication 6 October 1973)

Recently increasing attention has been focussed to heteroatom-substituted cyclopropenyl cation system in order to elucidate the features of the electronic behavior of this highly strained three-membered carbonium ions purturbed with hetero-atoms.¹⁻³ Especially, trithio-cyclopropenyl cations are of much interest, because hetero-[3]radialene structure (II) is expected to contribute to the ground state structure of I by the additional $[2p-3d]\pi$ conjugation of the carbon-sulfur bond of I. It has been reported

that such a $[2p-3d]\pi$ conjugation was observed in a sulfur-containing carbonium ion, thiopyrylium ion.⁴

If we assume that the three-membered ring $(C_3^+ \text{ core})$ of I corresponds to a sp^2 carbon atom as has been pointed out by us,⁵ then we will get trithiocarbonium ion (III) which is already obtained by Tucker and Roof.⁶ These consideration prompted us to synthesize trialkylthio- and triphenylthio-cyclopropenyl cations (I). The preparation of I also would arouse an attention from view point of preparative organic chemistry, because it could be a convenient synthetic intermediate as II is. We wish to report, in this communication, the successful synthesis^{7,8} of I_a (R = Me), I_b (R = Et), I_c (R = i-Pr), I_d (R = t-Bu) and I_e (R = phenyl) by a method treating tetrachlorocyclopropene with silver fluoroborate followed by addition of thiols in acetonitrile. In this case, the reaction is considered to proceed by S_N^1 mechanism. The general experimental procedure is as follows: Tetrachlorocyclopropene (1.78 g, 0.01 mole) in acetonitrile was added dropwise, with stirring, to a solution of silver fluoroborate (1.95 g, 0.01 mole) in the same solvent at $-20^\circ \sim -15^\circ$ under nitrogen. To this solution was added a solution of thiols (0.04 mole) and the reaction mixture was continued to stir at room temperature for $3 \sim 16$ hr. After filtration of silver chloride and removal of the solvent from the filtered solution, the residue was collected and recrystallized from chloroform-ether. The white crystalline products were confirmed to be trithiocyclopropenium fluoroborate by the spectral data and the elemental analyses.

The pmr spectra showed the signals due to the corresponding alkyl- and phenyl-groups in $I_{a^{n}e}$ and the infrared spectra all exhibited characteristic bands between 1390 \sim 1440 cm⁻¹ due to ring vibration (E') of the cyclopropenium ring^{9,10} and a broad fluoroborate absorption at 1020 \sim 1100 cm⁻¹. These trithiocyclopropenium fluoroborate are all stable without moisture¹¹ and soluble in chloroform, acetonitrile, acetone and dimethylformamide. The isolated yield, melting points and analytical data of $I_{a^{n}e}$ are summarized in Table I. $I_{a^{n}e}$ (as perchlorate) was also prepared according to our method¹ which was used to prepare triaminocyclopropenium ion. In the pmr spectra of I_a , I_b and I_c , the methyl, the methylene and the methyne protons directly attached to the sulfur atom show substantial downfield shift (0.73 \sim 0.90 ppm) in comparison with the corresponding thiols. The methyl and I_e also appeared at lower field than those of the corresponding thiols, respectively. This remarkable low field shift indicates that the electron-donating π conjugative effect of the sulfur atom to the C_3^+ core is dominant. The chemical shifts of the system $I_{a^{n}e}$, and those of the corresponding thiols are

	a 1 . 1 .	Yield (%)	Melting	Elemental Analysis			
	Substituent		Point (°C)		С	H	S
I _a	сн ₃ s	26	133 ~ 134	Found	27.33	3.51	36.65
				Calcd.	27.28	3.43	36.42
ι _b	сн ₃ сн ₂ s	29	107 ~ 108	Found	35.34	5.24	31.43
				Calcd.	35.30	4.94	31.42
т	(Cu) Cus	29	102 ∿ 105 (dec.)	Found	41.11	6.22	28.56
¹ c	(CH ₃) ₂ CH3	20		Calcd.	41.38	6.08	27.62
Ŧ	(07) 00	24	136 ∿ 138 (dec.)	Found	45.92	7.01	25.80
¹ d	(CH3)3CS	96		Calcd.	46.15	6.97	24.64
Ie	с ₆ н ₅ s	38	124 ∿ 126 (dec.)	Found	55.75	3.04	22.23
				Calcd.	56.05	3.36	21.37

Table I

listed in Table II.

Table II Comparison of the Chemical Shifts of ${\rm I}_{a^{\rm the}}$ with the corresponding Thiols

		Cyclopropenyl cation	The corresponding thiol	Δppm
I _a	сн ₃	2.93 (s) ^a	1.20 (d) ^{a,b}	0.73
Ib	сн ₂ Сн ₃	3.43 (q) ^a 1.57 (t) ^a	2.53 (q) ^{a,b} 1.30 (t) ^{a,b}	0.90 0.27
I _c	сн ^{Сн} з	3.93 (sep.) ^a 1.53 (d) ^a	3.17 (sep.) ^a 1.35 (d) ^a	0.76 0.18
Id	сн _з	1.67 (s) ^a	1.47 (s) ^a	0.20
Ι _e	^С 6 ^Н 5	7.82 \sim 7.30 (m) ^a	7.21 (s) ⁸	$0.09 \sim 0.61$

```
Chemical Shift (δ)
```

a) The spectra was measured in deuterochloroform in the concentration of ca. 5 % of both $I_{a \wedge e}$ and the corresponding thiols. b) S. Forsen, Acta Chem. Scand., <u>13</u>, 1472 (1959).

Furthermore, since δ 2.93 of methyl proton signal for I_a is close to that (δ 3.09) of trimethylthiomethyl carbonium ion (R = CH₃ in III) in which [2p-3d] π interaction between carbon (sp²)-sulfur bond can not take place, contribution of hetero-[3] radialene structure to I might be neglected. The high field shift of 0.16 ppm of I_a compared with III (R = CH₃) is attributed to the decrease of positive charge (1/3) of I relative to III (R = CH₃). The ultraviolet absorption at long-wave length of the cyclopropenyl cations, I_a (274 nm), I_b (274 nm), I_c (275 nm), I_d (276 nm) and I_e (277 nm), also supports the π -electron delocalization. The values of pK_{R^+} of $I_{a^{\wedge}d}$ estimated from the pK_{R^+} —ring vibration (E') relationship¹² were 2.3 \sim 2.4 indicating that trithiocyclopropenyl cation has similar stability to triphenylcyclopropenyl cation (pK_{R^+} , 2.8). Various reactions of trithiocyclopropenyl cation are now under investigation in our laboratory which will be published soon.

References

- 1) Z. Yoshida and Y. Tawara, J. Amer. Chem. Soc., 93, 2573 (1971).
- A. T. Ku and M. Sundaralingum, ibid., <u>94</u>, 1668 (1972); F. Cerson, G. Plattner and Z. Yoshida, Mol. Phys., <u>21</u>, 1027 (1971).
- 3) Z. Yoshida, Topics in Current Chemistry, Vol. 40, pp 48-72 (1973), Springer-Verlag.
- 4) S. Yoneda, T. Sugimoto and Z. Yoshida, Tetrahedron, 29, 2009 (1973).
- 5) Z. Yoshida, H. Konishi, Y. Tawara, H. Ogoshi, J. Amer. Chem. Soc., <u>95</u>, 3043 (1973).
- 6) W. P. Tucker and G. L. Roof, Tetrahedron Lett., 2747 (1967); J. Org. Chem., 33, 3333 (1968).
- 7) Z. Yoshida, S. Yoneda and S. Miki, The 26th Annual Meeting of the Chemical Society of Japan, Tokyo, Apr. 1972; Preprint III, p. 1533.
- 8) Gompper and Jersak [Tetrahedron Lett., 3409 (1973)] have recently prepared I_a , I_b , I_d and I_e according to our method.¹
- 9) R. C. Kerber and Chen-Ming Hsu, J. Amer. Chem. Soc., 95, 3239 (1973).
- a) R. Breslow, H. Höver and H. W. Chang, J. Amer. Chem. Soc., <u>84</u>, 3168 (1962); b) A. Krebs, Angew. Chem., <u>72</u>, 10 (1955); c) G. L. Closs, Advan. Alicyclic Chem., 1, 53 (1966).
- 11) In the presence of the moisture, I was readily hydrolyzed to afford dialkylthiocyclopropenone as the major product.
- 12) Z. Yoshida, H. Ogoshi, S. Hirota, Tetrahedron Lett., 869 (1973).